
Fast Scheduling for Optical Packet Switches with
Minimum Configurations c

Zhen Zhou, Xin Li and Mounir Hamdi
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

Email: {cszz, lixin, hamdi}@cs.ust.hk

Abstract-Scheduling optical packet switches with minimum
configurations has been proven to be NP-complete. Moreover, an
optimal scheduling algorithm will produce as many as @(log N)
empty slots in each switching per time slot for an N x N
optical switch. The best known algorithm approximates the
optimal solution in O (N 3 . 5) time. In this paper, we propose
an algorithm called DNC with minimal time complexity @ (N 2)
based on divide-and-conquer paradigm. The number of empty
slots created by our algorithm is upper bounded by @(N).
'However, simulation results indicate that it is approximately
O(log N) on average. Therefore, our dgorithm is more practical
and beats the previous ones when optical switches have large
reconfiguration overhead.

I . INTRODUCTION
Optical fabrics based on micro-electromechanical system

(MEMS) mirror [l] , thermal bubble [2] , waveguide [3], and
similar technologies [4] have been developed to meet the
explosion of the internet traffic demands. They further pro-
vide potential benefits including scalability, high bit rate,
and low power consumption on economical bases. However,
reconfiguring the fabric connections for optical switches are
more time-consuming than their electronic counterparts, due
to mechanical settling and synchronization.

A common approach to diminish the effect of large reconfig-
uration deiays is to periodically accumulates incoming traffic
before constructing a schedule that delivers the packets to the
output. Certain schedule consists of a number of switching
patterns. Each holds for a period of time slots. Because the
duration of both accumulating and transmitting packets shall
be the same for stability reasons, transmission speedup is
required in order to compensate not only fabric reconfigu-
ration delays but also inefficient use of time slots caused
by scheduling algorithms. Nevertheless, optimizing scheduling
cost for the optical switch scheduling (OSS) problem has been
proven to be NP-complete [5] . This suggests looking for fast
approximation algorithms that come close to the optimum
solution in polynomial time.

As the reconfiguration delay is very large compared to the
slotted time, it is always desirable to minimize the number
of switchings. There we several algorithms proposed. For
example, K-TRANSPONDERS [6] uses the least number of
swirchings but is impractical due to its large time complexity.

This work was supported in pari by a grant from Hong Kong Research
Grant Council (Grant Number: RGC HKUST6160/03E).

Towles and Dally invented a better algorithm MIN in [7] with
guaranteed performance bound. However, the time complexity
of MIN is still considered to be quite large. This is because
traditional methods employ bipartite matching algorithms or
edge coloring algorithms as subroutines. Therefore, in order
to accelerate scheduling algorithms for OSS problem, one has
t o look into some other paradigms.

In this paper, we devise a novel algorithm (DNC) based on
simple heuristic, namely divide-and-conquer. It turns out to
be a fast algorithm at the cost of large asymptotic worst case
bound on wastage. Our algorithm works in time proportional
to the size of the switch, which is the minimal amount one
can get. On the other hand, although there are more wasted
time slots produced by DNC in the worst case, our simulation
results provide the evidence that the expected number is kept
at low level.

In the remaining of the paper, we will first introduce all
technical aspects of OSS problem and its related researches
in Section 11. The description of our scheduling algorithm is
given in Section 111, followed by its performance analysis in
Section IV. The simulation data and discussion is presented
in Section V. Finally, we draw our conclusion in Section VI.

11. PRELIMINARIES

In an N x N optical switch, the incoming traffic rates is
denoted as an N x N matrix A = [X t , ~] ~ x N , The traffic is said
to be admissible if and only if no input port or output port is
oversubscribed. In other words, 5 1.
Moreover, there is at most one packet received from any input
port or dispatched 10 any output port in one time slot.

An optical switch works in a three-phase cycle as shown in
Figure 1. The three phases in turn are accumulating packets,
scheduling, and transmitting packets. Let T be a predefined
system parameter. After the accumulating phase of T time
slots, we obtain ademand matrix D = [d i , j] ~ x ~ in which any
row sum and column sum should not exceed the accumulated
port capacity under admissible traffic. That is,

Ai , j 5 1 and cj

a j

We will refer Equation (1) as admissible traffic condirion in
our later discussion.

The switch does the scheduling task in the second phase
and switches the packets to output lines in the third phase. In

0-7803-8924-7M5L§20.00 (c)ZOOS IEEE. 207

such a manner, pipelining is aIlowed and we are guaranteed
to have the worst case switching delay bounded by the sum
of the time spent in the three phases. As shown in Figure 1,
we assume the duration of all three phases is T for the ease
of analysis although they could be different. However. it is,
critical that the third phase never takes longer than the batch
time T because otherwise the optical switch is not stable. In
this model, the switching delay is at most 3T, because packets
that arrive in the first phase arc guaranteed to departure after
the third phase.

~ 0 0 1 - - - 0 -
0 0 0 . . . 1

p = 0 0 o . . - u
.

T 2 7 3 T

Three phases of optical switching and pipelining. Fig. I.

Optical switches set up a bipartite matching (shown in
Figure 2) between inputs and outputs in order to dispatch
packets in one time slot. This elementary unicast operation
can be modeIled as generating a (parlid) permurarian matrix
(i.e. swirching) P = ki, j]~xn which is a 0-1 matrix with at
most one “1” on each row or column. An “1” on itb row j th
column indicates that input a shall connect with output j in the
current switching. In general, we want a scheduling algorithm
that produces N , switchings P(k) (1 I k 5 Ns), each lasts for
(bk time slots, that covers the demand matrix. This constraint
can be written as Ck &p$) 2 d; , j , where is an entry in
matrix P(’)+

Each time the optical switch starts up a new connection, it
introduces a recanjiguratiun merhend 6 . Assuming that T is
larger than Tmin = N,S, in order to transmit all packets in T
time slots, speedup is required both to cover the reconfigura-
tion overhead and to compensate for empty slots left by the
scheduling algorithm. Since T,,, time slots for reconfiguring
the optical switch is substantial, only T - Tmi, time slots
are available for actually transmitting packets. Therefore, the
speedup required by the schedule is

Given that d is an unavoidable and dominating factor,
minimum number of switchings is desirable in most cases.
Let ri and cj denote the number of nonzero entries on
row i and column j respectively. Gopal and Wong have
shown that N , = max{maxi{rj}: max{cj]} is necessarily the
minimum number and indeed achievable in 0(N4) time [6].
Consequently. N , = N is sufficient and then the denominator
in (2) is fixed. Our objective becomes

N.

k=l

A side-effect comes together with minimizing the number
of switchings. We are expected to see a lot of empty slots. By
constructing an adversary input, Towles and Dally has proven
the following lemma in [7] .

L e m m 1: Any scheduling algorithm attempting to use only
X switchings will cause at least O(T1ogN) empty slots in
each switching.
Beside that, They also shown that their algorithm MIN
achieved this lower bound in O(N3.5) time.

The above mentioned approaches use exactly N switchings,
and are in fact non-preemptive scheduling algorithms. That is,
all the packets from input i to output j must be delivered
during one switching configuration. Whereas in preemprive
scheduling, they can be split and covered by several permuta-
tion matrices if necessary. However, it will generally introduce
more than IV switchings, up to a number of (N 2 - 2N + 2)
[91. Preemptive scheduling on optical switches is inherently
difficult: even approximating it within a factor of 7/6 is NP-
hard [SI. Some of the preemptive scheduling algorithms can
be found in [5] , [71-[10].

111. ALGORITHM DNC
Before we formally introduce our algorithm, let us first

present the idea with some notations defined. First, let’s
assume N = 2“, where n is an integer. Note that this
is a common situation in actual hardware implementation.
Consider any 2i x 2; demand matrix. denoted as Di (i 2 1).
We can divide it into four parts, each of size gip’ x 2i-1,
as shown in Figure 3. In counter-clockwise order, we denote

r 0 1

- c ‘ 0

Fig. 3. Divide a 2’x Zi matrix into 4 paas (Iefi) and an example of combining
two switchings in Dt-l and D:yl (right).

them Di-l, DiLl, and Di!l. These sub-matrices can
be regarded as subproblems and be further divided until the
size reaches 1 x 1.

In a bottom-up manner, we are able to obtain the switch-
ings of all subproblems. That is, for each subproblem, we

0-7803-8924-7/05/S20.00 (c)ZOOS IEEE. 208

obtain 2i- switching configurations associated with weights
$1, . . . , & + I , respectively. Observe that the solutions of any
two sub-matrices along the diagonal can be combined without
any column or row confliction. This is because the union
of two disjoint permutation matrices is still a permutation
matrix. Therefore, the 2' switchings of D!...l and DiYl can
be packed inlo 2i-1 double-sized switchings. One instance
of such combine operations is shown in Figure 3. We let
the larger weight of the two combined switchings become
the new weight of its union. The intuition is that pachng
two switchings with roughly same weights will result in little
wastage. Therefore, we first sort the switchings according to
their weights for both Df-l and Then we process the
combination in the sorted order. After that we obtain Zi-l

switchings for Di. Symmetrically, the other 2i-1 switchings
and weights can be obtained by combining Di' and nixl.
As a result, we construct the 2' switchings and weights for
Ri, which are then available to form the schedules for Di+l.

Next, we provide h e pseudo-code of our algorithm named
DIVIDE-AND-CONQUER (DNC) below.

Algorithm DNC(D,)
Input

Output:

sponding non-negative integer weights 81, . . . , @jv.
Procedure:

value to be 41, and then return.

_L

I\i x N nonnegative integer matrix D,, where N = 2".

A set of configuration matrices P(l) , . . . , P(") and corre-

If n = 0, assign the singie element to form P (l) and its

Otherwise,
1) Divide:

Partition D, into four disjoint Z n p l x P-' sub-matrices
of following:

Dn-l I = {&}, D ~ - ~ 11 = {dTc} : 1 I r ,c I E *
1 L: T 5 $ and + 1 5 c 5 N ;

2 '

DgLl = {&},
D:Yl = {&],

+ 1 I. T 5 N and 1 5 c 5 +;
+ 1 5 r: c 5 N . i

2) Conquer:

3) Combine:
Recursively call DNC(D;-,), q E {I, II, 111: IV}.

a) Sort the weights in non-increasing order for each
sub-matrix, such that &(Dz- l) is the kth largest
weight in DE-l, where q E {I, 11, III , IV).

b) Merge the results from the recursive call according
to the sorted order and construct the weights and
switchings, i.e.,

#k ,ax{#, (DL- 1) I #k (@TI 1)
4 + + k + maxI#k(o~-l),8k(D~~~)} - P(k)(Dipl) U P) (@ L l)

P ($ + k) c P("(D;-,) U P(k)(D;!J

4) Oictpub the result.

We demonsuate our algorithm on the following simple
example. Consider the following 4 x 4 demand matrix

10
27
28
0

5
16
8

21
5 ::I 0 *

27 1
28 0 1

[1; :;]
[2: 6 1

which has been partitioned into four 2 x 2 matrices. After
further partitioning, ail matrices are 1 x 1. and can be scheduled
trivially. As an example. the upper-left matrix 0:' is decom-
posed as

[ii i;] * [16) [27]

The resulting four 1 x 1 matrices are immediately available
for combining. It yields

I101

with weights &(Df') = 16, q52(Di1) = 27. Similarly, we have

0 1 P(l)(D:V) = [] and P(')(DiV) = [1 ,
with weights q51(D:v) = 21, &(DiV) = 8 for 0:". Arriving
at the combine step, we first sort the weights. After sorting,
P(')(@ j and P(2) (0;') swap their places, while Pi') (0;")
and P(2)(Div) remain the same. Then merging the four
switchings yields

and P(4) = 0 0 0 1
0 0 1 0 0 0 0 1

with weights Ch3 = 27, $4 = 16. We can perform similar
operations on the other diagonal, too.

The correctness proof of DNC involves two parts. First we
shall prove that exactly N permutation matrices are used for
scheduling N x N demand matrix. This can be shown in-
ductively by the arguments presented in the second paragraph
of this section. Secondly, we shall prove that the resulting N
switchings cover the demand matrix. Recall that we choose
the larger weight as the new weight after merging two sub-
matrices. Therefore, it must be larger than all entries that are
covered by the two sub-matrices. By induction, it is easy to see
that the ultimate weight is not smaller than any entry that is
covered by the corresponding switching. T h i s condition holds
for every switching DNC produced. In summary, DNC creates
exactly N switchings that cover the demand matrix.

IV. PERFORMANCE ANALYSIS

The performance of our algorithm is analyzed in two
aspects. We will first give a tight bound for its rime complexity.
Then we show the efficiency of our algorithm in terms of the
number of empty slots it produces.

0-7803-8924-7/05/s20.00 (c)ZOOS IEE. 209

A. Etne Complexity

we can write its time complexity X(N) as
Since DNC follows standard divide-and-conquer paradigm,

if N = 1,
otherwise.

X(N) = { '(*I
4X(f) + O (N log N)

In the above recurrence relation, 4X($1 comes from four
recursive calls in the cunyiier step. The assignments of new
weights and switching are of O(1) time each and are dom-
inated by the sorting operation. So O (N log N) is the worst-
case time complexity of the combine step. The time complexity
of other operations is at most O (N) , Lhus omitted.

By Master Theorem [ll], X (N) = O(lV2). This indicates
that the overall time complexity of the algorithm is propor-
tional to the number of eIemeats in the demand matrix. One
can hardly find an other algorithm that runs faster than DNC
asymptotic ally.

14w

1200-

1003

0

i am-
9
b

400-

MO

B. Eflciency
Due to the difference of the weights of two sub-matrices,

every combine step will cause a few empty slots. In this
subsection, we will show an asymptotic bound on the number
of empty slots for our algorithm.

Consider the scenario depicted in Figure 3 . The total number
of empty slots in Ri, denoted by E(Di), is coming from six
sources. They are

empty slots from four sub-matrices, Le., E(D:-l) where

empty slots from the merging operations in the combine
q E {I, 11,111, IV};

step, i.e.,

I I

n

-

-

0 '
1 6 6

15k52t-1

4- (4 k (E J - Wml). (4)

We multiply every difference by 2i-1 because all 2i-1
elements in the switching with smaller weight contribute
empty slots.

Sum them up, we have

E(Di) = E(D:-_,) + fx-I- (5)
qE{1,11,111,1\'}

It is again a recurrence relation. Hence, we can derive E(Dn)
by Master Theorem.

However, it is not trivial to estimate fi for every possible
i . We are only able to show the asymptotic bound of E(&),
from another perspective. In the worst case, each switching
configuration has associated weight T , but covers only one
nonzero entry (which has to have value T) of the demand
matrix D . In this case, it is easy to see that each switching
wastes O (N T) time slots in the worst case. Notice that this
worst case bound is valid for any OSS algorithm that attempts
to use minimum configurations.

It is possible to construct a malicious adversary matrix that
forces DNC actually reach the worst case bound. We give such
an input as follows. We construct the adversary matrix Dadu

by setting all d j , ~ ~ - ~ = T for 1 5 j 5
entries zero. Portion of such a matrix is shown below.

and all others

T 0 0 0 0 0
0 0 T 0 0 0 ' . '

The adversary matrix clearly fulfill the admissible traffic
condition as its row sums and column sums are no larger than
T. DNC will produce N / 2 switchings for Dadv, thus create
N (N T - 1)/2 empty slots in total. While on the other hand.
the optimal algorithm will produce only one switching with
K T / 2 empty slots. In this case, DNC produces T, = Q (N T) .

The worst case bound on the number of the empty
slots s e e m to be very large compared io the lower bound
8(Tlog IV) mentioned in Lemma 1. However, the adversary
input also hint that it is really unusual to have such kind
of demand matrices. This suggests further exploration on the
average number of empty slots produced by DNC.

v. SIMULATION AND DISCUSSION

The purpose of this simulation is to experiment the actual
performance of DNC in te rm of its efficiency. Details of our
methodology and outputs will be discussed in this section.

In our first experiment, we fix the size of the switch to be
N = 2''. The input demand matrices have random entries.
The values of T is also random and T >> 10N. Some of
matrices are sparse and the others are dense. reflecting the fact
that network traffics are by nature various. After running DNC
on lo4 such random matrices, we normalize the resulting Ty's
with respect to T. The statistical distribution of these T,/T's
is shown in Figure 4.

Fig. 4.
on a 2" x 21° switch.

Statistical distribution of T,/T over lo4 demand matrices by DNC

The arithmetic mean of these ,.IO+ sample executions is
about 1.7597, with standard deviation around 0.0179. From
the figure, we also see that the majority of the outputs vary
from 1.72 to 1.79, which form approximately a Gaussian

distribution. This implies that DNC runs quite stable on a large
set of inputs.

Our second experiment tests how T, changes on various
N values. The size of the switches ranges from 2l to 212.

The input demand matrices are generated at random as before.
We have seen from the previous experiment that arithmetic
mean (MEAN) and standard deviation (sTD) essentially capture
the distribution of T,/T. It is not necessary to present our
result in full detail. Therefore for each N value. we collect
the statistical data over lo4 DNC executions. summarized in
Table I. In the same table, we also compare the growth of
T,/T with that of log, N .

TABLE I
COMPARISONBETWEENT,/TAND log, N . (.V= 2', . . .

n = log, N
1
2
3
4
5
6
7
8
9
10
I 1
12

-
MEAN

1 .oooo
1.1065
1.2632
1.3973
1.4414
1.5 117
1.6022
1.6725
1.7184
1.7595
1.7912
1.8162

-

-

0.0000
0.0000
0.0000
0.0019
0.0032
0.0115
0.0271
0.0121
0.01 10

0.0171
0.0262

0.0533
0.0877
0.0993
0.0895
0.0853
0.0860
0.0842
0.0798
0.0760
0.0719
0.0680

When hi becomes larger and larger, the accuracy of our
statistical estimation shall drop because the sample space is
not sufficiently large to cover all possibilities. Even though,
it is clear that T,/T grows more or less linearly with respect
to log, N as implied from the last column of Table I. It is a
supportive evidence to our conjecture that DNC produces on
average O(1ogN) empty slots. It also confirms us with the
intuition that DNC performs badly with very low probability,
only on those artificial adversary inputs.

VI. CONCLUSION
Along with the fast development of Internet, optical switch-

ing technologies are becoming attractive for its huge capability
and scalability. The disadvantage of optical switching comes
from large reconfiguration overhead due to the technology
constraints. Because of the NP-completeness of the OSS
problem few scheduling algorithms have been both fast and
efficient. The DNC algorithm proposed in this paper provides
an altemative that runs in minimal amount of time with
bounded inefficiency in the worst case. It also guarantees that
the number of configurations required is minimum, which also
means minimum reconfiguration overhead.

By conducting simulations on large number of random
inputs, we observe that the average wastage of time slots
is about O(1ogN). It would be an interesting question for
future study to show whether or not it is a coincidence.
Moreover, since we applied a totally different paradigm for

OSS problem other than bipartite matching or edge coIoring,
future researches could also look for better heuristics that
solve the probIem. Another open question is whether divide-
and-conquer scheme could be improve the performance of
preemptive scheduling algorithms that allow I\i, > N .

ACKNOWLEDGMENT

The authors would like to thank Yajun Wang and Yan Zhang
for their useful discussion and anonymous referees for their
valuable comments.

REFERENCES
[l] P. B. Chu, S. S . Lee and S. Park. MEMS: The Path to L i q e Optical

Crossconnects IEEE Comnrunicahm Magazine. vol. 40, Issue 3. pp.
80-87, Mar. 2002.

[?I J . E. Fouquet, S . Venkatesh, M. Troll, D. Chen, H. E Wong. and
P. W, Baah. A compact. scalable cross-connect switch uklg total
internal refkction due to thermally-generated bubbles. In Proceedings
of Lasers and Elecrm-Optics S o c 2 6 ~ Annual Meerdng, pp. 169 - 170.
1998.

131 0. B. Spahn, C. Sullivan. I. Burkhm, C. Tigges, and E. Garcia. GaAs-
based microelectromechanical waveguide switches. In Proceeding of
IEEELCE0.5 hkernational Conference on Opticol MEMS, pp. 41 - 42.
2000.

[4] X. H. Ma and G. H. Kuo. Optical switching technology comparison:
optical MEMS vs. other technologies IEEE Communicarions Magazine,
vol. 41. Issue 11, pp. S16-S?3, Nov. 2003.

[5] X. t i and M. Hamdi. On scheduling optical packet switches with recon-
fi guration delay. IEEE Joltml on Selected Areas in Communications,
vol. 21, pp. 1156 - 1164, 2003.

[6] I. S . Copal and C. K. Wong. Minimizing the number of swilchings in
an SSlTDMA system. IEEE Transactions on Communicarwns, vol. 33,
pp. 497 - 501, 1985.

[7] E. Towles and W. J. Dally. Guaranteed scheduling for switches
with confi guration overhead. IEEWACM Transactions on NerWorking,
vol. 11, pp. 835 - 847, 1003.

181 P. Crescenzi, X. Deng, and C. H. Papadimitriou. On approximating
a scheduling problem Journal of Combinatorial Optimzasiun, vol. 5,
pp. 287 - 297, 2001.

[9] T. Inukai. An effi cient SSmDMA time slot assignment algorithm. IEEE
Transactions on Communicahns, vol. 27, pp, 1449 - 1455, 1979.

Efficient time slot assignment algorithms for tdm
hierarchical and non-hierarchical switching systems. IEEE Trunsacriom
on Communicarions, vol. 49, pp. 351 - 359, 2001.

[I l l T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C . Stein. Chapter 4,
Introduction ro Algorithms, 2nd mtion. M F Press, 2001.

[lo] L. K. Yeung.

0-7803-8924-7/05/~20.00 (~)2005 EEZ. 211

