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Abstract-Scheduling optical packet switches with minimum 
configurations has been proven to be NP-complete. Moreover, an 
optimal scheduling algorithm will produce as many as @(log N) 
empty slots in each switching per time slot for an N x N 
optical switch. The best known algorithm approximates the 
optimal solution in O ( N 3 . 5 )  time. In this paper, we propose 
an algorithm called DNC with minimal time complexity @ ( N 2 )  
based on divide-and-conquer paradigm. The number of empty 
slots created by our algorithm is upper bounded by @(N). 
'However, simulation results indicate that it is approximately 
O(log N )  on average. Therefore, our dgorithm is more practical 
and beats the previous ones when optical switches have large 
reconfiguration overhead. 

I .  INTRODUCTION 
Optical fabrics based on micro-electromechanical system 

(MEMS) mirror [l] ,  thermal bubble [ 2 ] ,  waveguide [3], and 
similar technologies [4] have been developed to meet the 
explosion of the internet traffic demands. They further pro- 
vide potential benefits including scalability, high bit rate, 
and low power consumption on economical bases. However, 
reconfiguring the fabric connections for optical switches are 
more time-consuming than their electronic counterparts, due 
to mechanical settling and synchronization. 

A common approach to diminish the effect of large reconfig- 
uration deiays is to periodically accumulates incoming traffic 
before constructing a schedule that delivers the packets to the 
output. Certain schedule consists of a number of switching 
patterns. Each holds for a period of time slots. Because the 
duration of both accumulating and transmitting packets shall 
be the same for stability reasons, transmission speedup is 
required in order to compensate not only fabric reconfigu- 
ration delays but also inefficient use of time slots caused 
by scheduling algorithms. Nevertheless, optimizing scheduling 
cost for the optical switch scheduling (OSS) problem has been 
proven to be NP-complete [5] .  This suggests looking for fast 
approximation algorithms that come close to the optimum 
solution in polynomial time. 

As the reconfiguration delay is very large compared to the 
slotted time, it is always desirable to minimize the number 
of switchings. There we several algorithms proposed. For 
example, K-TRANSPONDERS [6] uses the least number of 
swirchings but is impractical due to its large time complexity. 
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Towles and Dally invented a better algorithm MIN in [7] with 
guaranteed performance bound. However, the time complexity 
of MIN is still considered to be quite large. This is because 
traditional methods employ bipartite matching algorithms or 
edge coloring algorithms as subroutines. Therefore, in order 
to accelerate scheduling algorithms for OSS problem, one has 
t o  look into some other paradigms. 

In this paper, we devise a novel algorithm (DNC) based on 
simple heuristic, namely divide-and-conquer. It turns out to 
be a fast algorithm at the cost of large asymptotic worst case 
bound on wastage. Our algorithm works in time proportional 
to the size of the switch, which is the minimal amount one 
can get. On the other hand, although there are more wasted 
time slots produced by DNC in the worst case, our simulation 
results provide the evidence that the expected number is kept 
at low level. 

In the remaining of the paper, we will first introduce all 
technical aspects of OSS problem and its related researches 
in Section 11. The description of our scheduling algorithm is 
given in Section 111, followed by its performance analysis in 
Section IV. The simulation data and discussion is presented 
in Section V. Finally, we draw our conclusion in Section VI. 

11. PRELIMINARIES 

In an N x N optical switch, the incoming traffic rates is 
denoted as an N x N matrix A = [ X t , ~ ] ~ x  N ,  The traffic is said 
to be admissible if and only if no input port or output port is 
oversubscribed. In other words, 5 1. 
Moreover, there is at most one packet received from any input 
port or dispatched 10 any output port in one time slot. 

An optical switch works in a three-phase cycle as shown in 
Figure 1. The three phases in turn are accumulating packets, 
scheduling, and transmitting packets. Let T be a predefined 
system parameter. After the accumulating phase of T time 
slots, we obtain ademand matrix D = [ d i , j ] ~ x ~  in which any 
row sum and column sum should not exceed the accumulated 
port capacity under admissible traffic. That is, 

Ai , j  5 1 and cj 

a j 

We will refer Equation (1) as admissible traffic condirion in 
our later discussion. 

The switch does the scheduling task in the second phase 
and switches the packets to output lines in the third phase. In 
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such a manner, pipelining is aIlowed and we are guaranteed 
to have the worst case switching delay bounded by the sum 
of the time spent in the three phases. As shown in Figure 1, 
we assume the duration of all three phases is T for the ease 
of analysis although they could be different. However. it is, 
critical that the third phase never takes longer than the batch 
time T because otherwise the optical switch is not stable. In 
this model, the switching delay is at most 3T, because packets 
that arrive in the first phase arc guaranteed to departure after 
the third phase. 

~ 0 0 1 - - - 0 -  
0 0 0 . . .  1 

p =  0 0 o . . - u  
. . .  . . .  . . .  

T 2 7  3 T  

Three phases of optical switching and pipelining. Fig. I. 

Optical switches set up a bipartite matching (shown in 
Figure 2) between inputs and outputs in order to dispatch 
packets in one time slot. This elementary unicast operation 
can be modeIled as generating a (parlid) permurarian matrix 
(i.e. swirching) P = ki, j ]~xn which is a 0-1 matrix with at 
most one “1” on each row or column. An “1” on itb row j th  
column indicates that input a shall connect with output j in the 
current switching. In general, we want a scheduling algorithm 
that produces N ,  switchings P(k)  (1 I k 5 Ns), each lasts for 
(bk time slots, that covers the demand matrix. This constraint 
can be written as Ck &p$) 2 d; , j ,  where is an entry in 
matrix P(’)+ 

Each time the optical switch starts up a new connection, it 
introduces a recanjiguratiun merhend 6 .  Assuming that T is 
larger than Tmin = N,S, in order to transmit all packets in T 
time slots, speedup is required both to cover the reconfigura- 
tion overhead and to compensate for empty slots left by the 
scheduling algorithm. Since T,,, time slots for reconfiguring 
the optical switch is substantial, only T - Tmi, time slots 
are available for actually transmitting packets. Therefore, the 
speedup required by the schedule is 

Given that d is an unavoidable and dominating factor, 
minimum number of switchings is desirable in most cases. 
Let ri and cj denote the number of nonzero entries on 
row i and column j respectively. Gopal and Wong have 
shown that N ,  = max{maxi{rj}: max{cj]} is necessarily the 
minimum number and indeed achievable in 0(N4) time [6]. 
Consequently. N ,  = N is sufficient and then the denominator 
in (2) is fixed. Our objective becomes 

N. 

k=l  

A side-effect comes together with minimizing the number 
of switchings. We are expected to see a lot of empty slots. By 
constructing an adversary input, Towles and Dally has proven 
the following lemma in [7] .  

L e m m  1: Any scheduling algorithm attempting to use only 
X switchings will cause at least O(T1ogN) empty slots in 
each switching. 
Beside that, They also shown that their algorithm MIN 
achieved this lower bound in O(N3.5 )  time. 

The above mentioned approaches use exactly N switchings, 
and are in fact non-preemptive scheduling algorithms. That is, 
all the packets from input i to output j must be delivered 
during one switching configuration. Whereas in preemprive 
scheduling, they can be split and covered by several permuta- 
tion matrices if necessary. However, it will generally introduce 
more than IV switchings, up to a number of ( N 2  - 2N + 2) 
[91. Preemptive scheduling on optical switches is inherently 
difficult: even approximating it within a factor of 7/6 is NP- 
hard [SI. Some of the preemptive scheduling algorithms can 
be found in [ 5 ] ,  [71-[10]. 

111. ALGORITHM DNC 
Before we formally introduce our algorithm, let us first 

present the idea with some notations defined. First, let’s 
assume N = 2“, where n is an integer. Note that this 
is a common situation in actual hardware implementation. 
Consider any 2i x 2; demand matrix. denoted as Di ( i  2 1). 
We can divide it into four parts, each of size gip’ x 2i-1, 
as shown in Figure 3. In counter-clockwise order, we denote 

r 0 1  

- c ‘ 0  

Fig. 3. Divide a 2’x Zi matrix into 4 paas (Iefi) and an example of combining 
two switchings in Dt-l and D:yl (right). 

them Di-l, DiLl, and Di!l. These sub-matrices can 
be regarded as subproblems and be further divided until the 
size reaches 1 x 1. 

In a bottom-up manner, we are able to obtain the switch- 
ings of all subproblems. That is, for each subproblem, we 
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obtain 2i- switching configurations associated with weights 
$1, . . . , & + I ,  respectively. Observe that the solutions of any 
two sub-matrices along the diagonal can be combined without 
any column or row confliction. This is because the union 
of two disjoint permutation matrices is still a permutation 
matrix. Therefore, the 2' switchings of D!...l and DiYl can 
be packed inlo 2i-1 double-sized switchings. One instance 
of such combine operations is shown in Figure 3. We let 
the larger weight of the two combined switchings become 
the new weight of its union. The intuition is that pachng 
two switchings with roughly same weights will result in little 
wastage. Therefore, we first sort the switchings according to 
their weights for both Df-l and Then we process the 
combination in the sorted order. After that we obtain Zi-l  

switchings for Di. Symmetrically, the other 2i-1 switchings 
and weights can be obtained by combining Di' and nixl. 
As a result, we construct the 2' switchings and weights for 
Ri, which are then available to form the schedules for Di+l. 

Next, we provide h e  pseudo-code of our algorithm named 
DIVIDE-AND-CONQUER (DNC) below. 

Algorithm DNC(D,) 
Input 

Output: 

sponding non-negative integer weights 81, . . . , @jv. 
Procedure: 

value to be 41, and then return. 

_L 

I\i x N nonnegative integer matrix D,, where N = 2". 

A set of configuration matrices P( l ) ,  . . . , P(") and corre- 

If n = 0, assign the singie element to form P ( l )  and its 

Otherwise, 
1) Divide: 

Partition D, into four disjoint Z n p l  x P-' sub-matrices 
of following: 

Dn-l I = {&}, D ~ - ~  11 = {dTc} :  1 I r ,c  I E *  
1 L: T 5 $ and + 1 5 c 5 N ;  

2 '  

DgLl = {&}, 
D:Yl = {&], 

+ 1 I. T 5 N and 1 5 c 5 +; 
+ 1 5 r: c 5 N .  i 

2) Conquer: 

3 )  Combine: 
Recursively call DNC(D;-,), q E {I, II, 111: IV}. 

a) Sort the weights in non-increasing order for each 
sub-matrix, such that &(Dz- l )  is the kth largest 
weight in DE-l, where q E {I, 11, III ,  IV). 

b) Merge the results from the recursive call according 
to the sorted order and construct the weights and 
switchings, i.e., 

#k ,ax{#, (DL- 1 )  I #k (@TI 1) 
4 + + k  + maxI#k(o~-l),8k(D~~~)} - P(k)(Dipl) U P ) ( @ L l )  

P ( $ + k )  c P("(D;-,) U P(k)(D;!J 

4) Oictpub the result. 

We demonsuate our algorithm on the following simple 
example. Consider the following 4 x 4 demand matrix 

10 
27 
28 
0 

5 
16 
8 

21 
5 ::I 0 * 

27 1 
28 0 1 

[ 1; :;] 
[2:  6 1  

which has been partitioned into four 2 x 2 matrices. After 
further partitioning, ail matrices are 1 x 1. and can be scheduled 
trivially. As an example. the upper-left matrix 0:' is decom- 
posed as 

[ ii i; ] * [16) [27] 

The resulting four 1 x 1 matrices are immediately available 
for combining. It yields 

I101 

with weights &(Df') = 16, q52(Di1) = 27. Similarly, we have 

0 1  P(l)(D:V) = [ ] and P(')(DiV) = [ 1 ,  
with weights q51(D:v) = 21, &(DiV) = 8 for 0:". Arriving 
at the combine step, we first sort the weights. After sorting, 
P(')( @ j  and P(2)  (0;') swap their places, while Pi') (0;") 
and P(2)(Div) remain the same. Then merging the four 
switchings yields 

and P(4) = 0 0 0 1  
0 0 1 0  0 0 0 1  

with weights Ch3 = 27, $4 = 16. We can perform similar 
operations on the other diagonal, too. 

The correctness proof of DNC involves two parts. First we 
shall prove that exactly N permutation matrices are used for 
scheduling N x N demand matrix. This can be shown in- 
ductively by the arguments presented in the second paragraph 
of this section. Secondly, we shall prove that the resulting N 
switchings cover the demand matrix. Recall that we choose 
the larger weight as the new weight after merging two sub- 
matrices. Therefore, it must be larger than all entries that are 
covered by the two sub-matrices. By induction, it is easy to see 
that the ultimate weight is not smaller than any entry that is 
covered by the corresponding switching. T h i s  condition holds 
for every switching DNC produced. In summary, DNC creates 
exactly N switchings that cover the demand matrix. 

IV. PERFORMANCE ANALYSIS 

The performance of our algorithm is analyzed in two 
aspects. We will first give a tight bound for its rime complexity. 
Then we show the efficiency of our algorithm in terms of the 
number of empty slots it produces. 
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A. Etne Complexity 

we can write its time complexity X( N )  as 
Since DNC follows standard divide-and-conquer paradigm, 

if N = 1, 
otherwise. 

X(N) = { '(*I 
4X( f )  + O ( N  log N )  

In the above recurrence relation, 4X( $1 comes from four 
recursive calls in the cunyiier step. The assignments of new 
weights and switching are of O(1) time each and are dom- 
inated by the sorting operation. So O ( N  log N )  is the worst- 
case time complexity of the combine step. The time complexity 
of other operations is at most O ( N ) ,  Lhus omitted. 

By Master Theorem [ll],  X ( N )  = O(lV2).  This indicates 
that the overall time complexity of the algorithm is propor- 
tional to the number of eIemeats in the demand matrix. One 
can hardly find an other algorithm that runs faster than DNC 
asymptotic ally. 

14w 

1200- 

1003 

0 

i am- 
9 
b 

400- 

MO 

B. Eflciency 
Due to the difference of the weights of two sub-matrices, 

every combine step will cause a few empty slots. In this 
subsection, we will show an asymptotic bound on the number 
of empty slots for our algorithm. 

Consider the scenario depicted in Figure 3 .  The total number 
of empty slots in Ri, denoted by E(Di), is coming from six 
sources. They are 

empty slots from four sub-matrices, Le., E(D:-l) where 

empty slots from the merging operations in the combine 
q E {I, 11,111, IV}; 

step, i.e., 

I I 

n 

- 

- 

0 '  
1 6 6  

15k52t-1 

4- ( 4 k ( E J  - Wml). (4) 

We multiply every difference by 2i-1 because all 2i-1 
elements in the switching with smaller weight contribute 
empty slots. 

Sum them up, we have 

E(Di)  = E(D:-_,) + fx-I- (5) 
qE{1,11,111,1\'} 

It is again a recurrence relation. Hence, we can derive E(Dn) 
by Master Theorem. 

However, it is not trivial to estimate fi for every possible 
i .  We are only able to show the asymptotic bound of E(&),  
from another perspective. In the worst case, each switching 
configuration has associated weight T ,  but covers only one 
nonzero entry (which has to have value T )  of the demand 
matrix D .  In this case, it is easy to see that each switching 
wastes O ( N T )  time slots in the worst case. Notice that this 
worst case bound is valid for any OSS algorithm that attempts 
to use minimum configurations. 

It is possible to construct a malicious adversary matrix that 
forces DNC actually reach the worst case bound. We give such 
an input as follows. We construct the adversary matrix Dadu 

by setting all d j , ~ ~ - ~  = T for 1 5 j 5 
entries zero. Portion of such a matrix is shown below. 

and all others 

T 0 0 0 0 0 
0 0 T 0 0 0 ' . '  

The adversary matrix clearly fulfill the admissible traffic 
condition as its row sums and column sums are no larger than 
T. DNC will produce N / 2  switchings for Dadv, thus create 
N ( N T  - 1)/2 empty slots in total. While on the other hand. 
the optimal algorithm will produce only one switching with 
K T / 2  empty slots. In this case, DNC produces T, = Q ( N T ) .  

The worst case bound on the number of the empty 
slots s e e m  to be very large compared io the lower bound 
8(Tlog IV) mentioned in Lemma 1. However, the adversary 
input also hint that it is really unusual to have such kind 
of demand matrices. This suggests further exploration on the 
average number of empty slots produced by DNC. 

v. SIMULATION AND DISCUSSION 

The purpose of this simulation is to experiment the actual 
performance of DNC in te rm of its efficiency. Details of our 
methodology and outputs will be discussed in this section. 

In our first experiment, we fix the size of the switch to be 
N = 2''. The input demand matrices have random entries. 
The values of T is also random and T >> 10N. Some of 
matrices are sparse and the others are dense. reflecting the fact 
that network traffics are by nature various. After running DNC 
on lo4 such random matrices, we normalize the resulting Ty's 
with respect to T.  The statistical distribution of these T,/T's 
is shown in Figure 4. 

Fig. 4. 
on a 2" x 21° switch. 

Statistical distribution of T,/T over lo4 demand matrices by DNC 

The arithmetic mean of these ,.IO+ sample executions is 
about 1.7597, with standard deviation around 0.0179. From 
the figure, we also see that the majority of the outputs vary 
from 1.72 to 1.79, which form approximately a Gaussian 



distribution. This implies that DNC runs quite stable on a large 
set of inputs. 

Our second experiment tests how T, changes on various 
N values. The size of the switches ranges from 2l to 212. 

The input demand matrices are generated at random as before. 
We have seen from the previous experiment that arithmetic 
mean (MEAN) and standard deviation (sTD) essentially capture 
the distribution of T,/T. It is not necessary to present our 
result in full detail. Therefore for each N value. we collect 
the statistical data over lo4 DNC executions. summarized in 
Table I. In the same table, we also compare the growth of 
T,/T with that of log, N .  

TABLE I 
COMPARISONBETWEENT,/TAND log, N .  ( .V= 2', . . . 

n = log, N 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
I 1  
12 

- 
MEAN 

1 .oooo 
1.1065 
1.2632 
1.3973 
1.4414 
1.5 117 
1.6022 
1.6725 
1.7184 
1.7595 
1.7912 
1.8162 

- 

- 

0.0000 
0.0000 
0.0000 
0.0019 
0.0032 
0.0115 
0.0271 
0.0121 
0.01 10 

0.0171 
0.0262 

0.0533 
0.0877 
0.0993 
0.0895 
0.0853 
0.0860 
0.0842 
0.0798 
0.0760 
0.0719 
0.0680 

When hi becomes larger and larger, the accuracy of our 
statistical estimation shall drop because the sample space is 
not sufficiently large to cover all possibilities. Even though, 
it is clear that T,/T grows more or less linearly with respect 
to log, N as implied from the last column of Table I. It is a 
supportive evidence to our conjecture that DNC produces on 
average O(1ogN) empty slots. It also confirms us with the 
intuition that DNC performs badly with very low probability, 
only on those artificial adversary inputs. 

VI. CONCLUSION 
Along with the fast development of Internet, optical switch- 

ing technologies are becoming attractive for its huge capability 
and scalability. The disadvantage of optical switching comes 
from large reconfiguration overhead due to the technology 
constraints. Because of the NP-completeness of the OSS 
problem few scheduling algorithms have been both fast and 
efficient. The DNC algorithm proposed in this paper provides 
an altemative that runs in minimal amount of time with 
bounded inefficiency in the worst case. It also guarantees that 
the number of configurations required is minimum, which also 
means minimum reconfiguration overhead. 

By conducting simulations on large number of random 
inputs, we observe that the average wastage of time slots 
is about O(1ogN). It would be an interesting question for 
future study to show whether or not it is a coincidence. 
Moreover, since we applied a totally different paradigm for 

OSS problem other than bipartite matching or edge coIoring, 
future researches could also look for better heuristics that 
solve the probIem. Another open question is whether divide- 
and-conquer scheme could be improve the performance of 
preemptive scheduling algorithms that allow I\i, > N .  

ACKNOWLEDGMENT 

The authors would like to thank Yajun Wang and Yan Zhang 
for their useful discussion and anonymous referees for their 
valuable comments. 

REFERENCES 
[ l ]  P. B. Chu, S. S .  Lee and S. Park. MEMS: The Path to L i q e  Optical 

Crossconnects IEEE Comnrunicahm Magazine. vol. 40, Issue 3. pp. 
80-87, Mar. 2002. 

[?I J .  E. Fouquet, S .  Venkatesh, M. Troll, D. Chen, H. E Wong. and 
P. W, Baah. A compact. scalable cross-connect switch uklg total 
internal refkction due to thermally-generated bubbles. In Proceedings 
of Lasers and Elecrm-Optics S o c 2 6 ~  Annual Meerdng, pp. 169 - 170. 
1998. 

131 0. B.  Spahn, C. Sullivan. I. Burkhm, C. Tigges, and E. Garcia. GaAs- 
based microelectromechanical waveguide switches. In Proceeding of 
IEEELCE0.5 hkernational Conference on Opticol MEMS, pp. 41 - 42. 
2000. 

[4] X. H. Ma and G. H. Kuo. Optical switching technology comparison: 
optical MEMS vs. other technologies IEEE Communicarions Magazine, 
vol. 41. Issue 11, pp. S16-S?3, Nov. 2003. 

[5] X. t i  and M. Hamdi. On scheduling optical packet switches with recon- 
fi guration delay. IEEE Joltml on Selected Areas in Communications, 
vol. 21, pp. 1156 - 1164, 2003. 

[ 6 ]  I. S .  Copal and C. K. Wong. Minimizing the number of swilchings in 
an SSlTDMA system. IEEE Transactions on Communicarwns, vol. 33, 
pp. 497 - 501, 1985. 

[7] E. Towles and W. J. Dally. Guaranteed scheduling for switches 
with confi guration overhead. IEEWACM Transactions on NerWorking, 
vol. 11, pp. 835 - 847, 1003. 

181 P. Crescenzi, X. Deng, and C. H. Papadimitriou. On approximating 
a scheduling problem Journal of Combinatorial Optimzasiun, vol. 5, 
pp. 287 - 297, 2001. 

[9] T. Inukai. An effi cient SSmDMA time slot assignment algorithm. IEEE 
Transactions on Communicahns, vol. 27, pp, 1449 - 1455, 1979. 

Efficient time slot assignment algorithms for tdm 
hierarchical and non-hierarchical switching systems. IEEE Trunsacriom 
on Communicarions, vol. 49, pp. 351 - 359, 2001. 

[ I l l  T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C .  Stein. Chapter 4, 
Introduction ro Algorithms, 2nd mtion.  M F  Press, 2001. 

[lo] L. K. Yeung. 

0-7803-8924-7/05/~20.00 (~)2005 EEZ. 211 


